Maps and Dictionaries

Data structures and Algorithms

Outline

- Maps (9.1)
- Hash tables (9.2)
- Dictionaries (9.3)

Maps & Dictionaries

- Map ADT and Dictionary ADT:
 - model a searchable collection of key-value entries
 - main operations are searching, inserting, and deleting entries
- Map: multiple entries with the same key are **not** allowed
- Map applications:
 - address book
 - student-record database
- Dictionary: multiple entries with the same key are **allowed**
- Dictionary applications:
 - word-definition pairs
 - credit card authorizations
 - DNS mapping of host names (e.g., datastructures.net) to internet IP addresses (e.g., 128.148.34.101)
The Map ADT

Map ADT methods:

- `get(k)`: if the map M has an entry with key k, return its associated value; else, return null
- `put(k, v)`: insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- `remove(k)`: if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- `size()`, `isEmpty()`
- `keys()`: return an iterator of the keys in M
- `values()`: return an iterator of the values in M

Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>Ø</td>
</tr>
<tr>
<td>put(5, A)</td>
<td>null</td>
<td>(5, A)</td>
</tr>
<tr>
<td>put(7, B)</td>
<td>null</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>put(2, C)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C)</td>
</tr>
<tr>
<td>put(8, D)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>put(2, E)</td>
<td>C</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(7)</td>
<td>B</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(4)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>E</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>size()</td>
<td>4</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>remove(5)</td>
<td>A</td>
<td>(7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>remove(2)</td>
<td>E</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>null</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>false</td>
<td>(7, B), (8, D)</td>
</tr>
</tbody>
</table>

```
// std::map example
// opposite words
#include <iostream>
#include <map>
#include <string>
using namespace std;

typedef std::map<std::string, std::string> TStrStrMap;
typedef std::pair<std::string, std::string> TStrStrPair;

int main(int argc, char *argv[]) {
    TStrStrMap tMap;

    tMap.insert(TStrStrPair("yes", "no"));
    tMap.insert(TStrStrPair("up", "down"));
    tMap.insert(TStrStrPair("left", "right"));
    tMap.insert(TStrStrPair("good", "bad"));

    std::string key;
    std::cout << "Enter word: " << std::endl;
    std::cin >> key;

    std::string strValue = tMap[key];
    if(strValue=="")
        std::cout << "Opposite: " << strValue << std::endl;  // Show value
    else
    {
        TStrStrMap::iterator p;
        bool bFound=false;
        // Show key
        for(p = tMap.begin(); p!=tMap.end(); ++p) {
            strKey= p->second;
            if( key == strKey) {
                // Return key
                std::cout << "Opposite: " << p->first << std::endl;
                bFound = true;
            }
        }

        if(!bFound)  // If not found opposite word
            std::cout << "Word not in map." << std::endl;
    }
    return 0;
}
```
Dictionary ADT

- The dictionary ADT models a searchable collection of key-value entries: ordered and unordered.
- The main operations of a dictionary are searching, inserting, and deleting items.
- Multiple items with the same key are allowed.

Applications:
- Word-definition pairs
- Credit card authorizations
- DNS mapping of host names (e.g., datastructures.net) to internet IP addresses (e.g., 128.148.34.101)

Dictionary ADT methods:
- **find(k)**: if the dictionary has an entry with key k, returns it, else, returns null
- **findAll(k)**: returns an iterator of all entries with key k
- **insert(k, o)**: inserts and returns the entry (k, o)
- **remove(e)**: remove the entry e from the dictionary
- **entries()**: returns an iterator of the entries in the dictionary
- **size()**, **isEmpty()**

Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Dictionary</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(5, A)</td>
<td>(5, A)</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>insert(7, B)</td>
<td>(7, B)</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>insert(2, C)</td>
<td>(2, C)</td>
<td>(5, A), (7, B), (2, C)</td>
</tr>
<tr>
<td>insert(8, D)</td>
<td>(8, D)</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>insert(2, E)</td>
<td>(2, E)</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>find(7)</td>
<td>(7, B)</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>find(4)</td>
<td>(2, C)</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>find(2)</td>
<td>(2, C)</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>findAll(2)</td>
<td>(2, C), (2, E)</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>size()</td>
<td>5</td>
<td>(5, A), (7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>remove(find(5))</td>
<td>(5, A)</td>
<td>(7, B), (2, C), (8, D), (2, E)</td>
</tr>
<tr>
<td>find(5)</td>
<td>null</td>
<td>(7, B), (2, C), (8, D), (2, E)</td>
</tr>
</tbody>
</table>

Implement Dictionary ADT

- **Unordered dictionary**
 - List-based dictionary
 - Hash table
- **Ordered dictionary**
 - Array-based dictionary – search table
 - Skip list

Hash Tables
Hash table

- Expected time of search, put: $O(1)$
- Bucket array
- Hash function

Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval $[0, N - 1]$
 - Example: $h(x) = x \mod N$
 - is a hash function for integer keys
 - The integer $h(x)$ is called the hash value of key x

- A hash table for a given key type consists of
 - Hash function h
 - Array (called table) of size N

When implementing a map with a hash table, the goal is to store item (k, o) at index $i = h(x)$

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size $N = 10,000$ and the hash function $h(x) = \text{last four digits of } x$

Hash Functions

- A hash function is usually specified as the composition of two functions:
 - Hash code: h_1: keys \rightarrow integers
 - Compression function: h_2: integers $\rightarrow [0, N - 1]$

- The hash code map is applied first, and the compression map is applied next on the result, i.e.,
 $h(x) = h_2(h_1(x))$

- The goal of the hash function is to “disperse” the keys in an apparently random way
 - minimize collisions
Hash Codes

- **Memory address:**
 - We reinterpret the memory address of the key object as an integer.
 - Good in general, except for numeric and string keys (same key should have the same hash code).

- **Integer cast:**
 - We reinterpret the bits of the key as an integer.
 - Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C/C++)

- **Component sum:**
 - We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows).
 - Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double).

Hash Codes (cont.)

- **Polynomial accumulation:**
 - Order is important.
 - We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits).
 - We evaluate the polynomial $p(z) = a_0 + a_1z + a_2z^2 + \ldots + a_{n-1}z^{n-1}$ at a fixed value z, ignoring overflows.
 - Especially suitable for strings (e.g., the choice $z = 33$ gives at most 6 collisions on a set of 50,000 English words).

- **Compression Functions:**
 - **Division:**
 - $h_1(y) = y \mod N$
 - The size N of the hash table is usually chosen to be a prime.
 - Reason: reduce collisions.
 - How: number theory and is beyond the scope of this course.

 - **Multiply, Add and Divide (MAD):**
 - $h_2(y) = (ay + b) \mod N$
 - N is prime, a and b are nonnegative integers such that $a \mod N \neq 0$.
 - Otherwise, every integer would map to the same value b.

 - **Polynomial $p(z)$ can be evaluated in $O(n)$ time using Horner’s rule:**
 - The following polynomials are successively computed, each from the previous one in $O(1)$ time.
 - $p_0(z) = a_{n-1}$
 - $p_i(z) = a_{n-i} + 2p_{i-1}(z)$ ($i = 1, 2, \ldots, n - 1$).

 - We have $p(z) = p_{n-1}(z)$.

Collision Handling

- **Collisions occur when different elements are mapped to the same cell.**
- **Ways to handle collisions:**
 - Separate chaining.
 - Linear probing.
 - Double hashing.

- **Separate chaining:**
 - $0 \leftrightarrow 025-612-0001$
 - $1 \leftrightarrow 451-229-0004$
 - $2 \leftrightarrow 981-101-0004$
 - $3 \leftrightarrow 451-229-0004$
 - $4 \leftrightarrow 981-101-0004$
Separate Chaining

- We let each cell in the table point to a linked list of entries that map there.
- Load factor: $n/N < 1$
- Separate chaining is simple, but requires additional memory outside the table.
- Example:
 - Assume you have a hash table H with $N=9$ slots ($H[0,8]$) and let the hash function be $h(k) = k \mod N$.
 - Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by chaining.
 - $5, 28, 19, 15, 20, 33, 12, 17, 10$

Map Methods with Separate Chaining used for Collisions

- Delegate operations to a list-based map at each cell.

Algorithm `get(k)`:
- **Output**: The value associated with the key k in the map, or `null` if there is no entry with key equal to k in the map.
- **return** $A[H(k)].get(k)$
 (delegate the get to the list-based map at $A[H(k)]$)

Algorithm `put(k,v)`:
- **Output**: If there is an existing entry in our map with key equal to k, then we return its value (replacing it with v); otherwise, we return `null`.
- **return** $A[H(k)].put(k,v)$
 (delegate the put to the list-based map at $A[H(k)]$)
- if $t = \text{null}$ then
 $n = n + 1$
- **return** t

Algorithm `remove(k)`:
- **Output**: The (removed) value associated with key k in the map, or `null` if there is no entry with key equal to k in the map.
- **return** $A[H(k)].remove(k)$
 (delegate the remove to the list-based map at $A[H(k)]$)
- if $t = \text{null}$ then
 k was found
- $n = n - 1$
- **return** t

Linear Probing

- **Open addressing**: the colliding item is placed in a different cell of the table.
- **Linear probing** handles collisions by placing the colliding item in the next (circularly) available table cell.
- Each table cell inspected is referred to as a “probe”.
- Colliding items lump together, causing future collisions to cause a longer sequence of probes.

Example:
- $h(x) = x \mod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order.

Search with Linear Probing

- Consider a hash table A that uses linear probing.
- **get(k)**
 - We start at cell $h(k)$.
 - We probe consecutive locations until one of the following occurs:
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed.

Algorithm `get(k)`:
- $i \leftarrow h(k)$
- $p \leftarrow 0$
- repeat
 - $c \leftarrow A[i]$
 - if $c = \emptyset$ then
 return `null`
 - else if $c.key() = k$ then
 return `c.element()`
 - else
 $i \leftarrow (i + 1) \mod N$
 $p \leftarrow p + 1$
 until $p = N$
- **return** `null`
Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements.
- remove(k)
 - We search for an entry with key k.
 - If such an entry (k, o) is found, we replace it with the special item AVAILABLE and return element o.
 - Else, we return null.

put(k, o)
- We throw an exception if the table is full.
- We start at cell h(k).
- We probe consecutive cells until one of the following occurs:
 - A cell i is found that is either empty or stores AVAILABLE, or
 - N cells have been unsuccessfully probed.
- We store entry (k, o) in cell i.

Double Hashing

- Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series
 \[h(k,i) = (h(k) + i \times d(k)) \mod N \]
 for \(i = 0, 1, \ldots, N - 1 \).
- The secondary hash function d(k) cannot have zero values.
- The table size N must be a prime to allow probing of all the cells.
- Common choice of compression function for the secondary hash function:
 \[d_i(k) = q - (k \mod q) \]
 where
 - q < N
 - q is a prime.
- The possible values for \(d_i(k) \) are 1, 2, …, q.

Example of Double Hashing

- Consider a hash table storing integer keys that handles collision with double hashing:
 - \(N = 13 \)
 - \(h(k) = k \mod 13 \)
 - \(d(k) = 7 - k \mod 7 \)
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order.

Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take \(O(n) \) time.
- The worst case occurs when all the keys inserted into the map collide.
- The load factor \(\alpha = n/N \) affects the performance of a hash table.
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is
 \[1 / (1 - \alpha) \]
- The expected running time of all the dictionary ADT operations in a hash table is \(O(1) \).
- In practice, hashing is very fast provided the load factor is not close to 100%.
- Applications of hash tables:
 - small databases
 - compilers
 - browser caches
- Open addressing is not faster than chaining method if space is an issue.
Hash Table Implementation of Dictionary ADT

- Unordered dictionaries.
- We can also create a hash-table dictionary implementation.
- If we use separate chaining to handle collisions, then each operation can be delegated to a list-based dictionary stored at each hash table cell.