Trees

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++
Goodrich, Tamassia and Mount (Wiley, 2004)

Make Money Fast!
Stock Fraud
Ponzi Scheme
Bank Robbery

Outline and Reading

◆ Tree ADT (§7.1.2)
◆ Preorder and postorder traversals (§7.2)
◆ BinaryTree ADT (§7.3)
◆ Inorder traversal (§7.3.6)

What is a Tree

• In computer science, a tree is an abstract model of a hierarchical structure
• A tree consists of nodes with a parent-child relation
• Applications:
 ■ Organization charts
 ■ File systems

Tree Terminology

• Root: node without parent (A)
• Internal node: node with at least one child (A, B, C, F)
• Leaf (aka External node): node without children (E, I, J, K, G, H, D)
• Ancestors of a node: parent, grandparent, great-grandparent, etc.
• Depth of a node: number of ancestors
• Height of a tree: maximum depth of any node (3)
• Descendant of a node: child, grandchild, great-grandchild, etc.

Subtree: tree consisting of a node and its descendants
Exercise: Trees

Answer the following questions about the tree shown on the right:

- What is the size of the tree (number of nodes)?
- Classify each node of the tree as a root, leaf, or internal node.
- List the ancestors of nodes B, F, G, and A. Which are the parents?
- List the descendents of nodes B, F, G, and A. Which are the children?
- List the depths of nodes B, F, G, and A.
- What is the height of the tree?
- Draw the subtrees that are rooted at node F and at node K.

```
A
  / \  \
 B   C
  / \  / \  \
 E   F G   H
  / \ / \  / \  \
 I   J K   
```

Tree ADT

We use positions to abstract nodes

Generic methods:
- `integer size()`
- `boolean isEmpty()`
- `objectIterator elements()`
- `positionIterator positions()`

Accessor methods:
- `position root()`
- `position parent(p)`
- `positionIterator children(p)`

Query methods:
- `boolean isInternal(p)`
- `boolean isLeaf(p)`
- `boolean isRoot(p)`

Update methods:
- `swapElements(p, q)`
- `object replaceElement(p, o)`

Additional update methods may be defined by data structures implementing the Tree ADT.

Depth and Height

- `v`: a node of a tree `T`.
- The **depth** of `v` is the number of ancestors of `v`, excluding `v` itself.
- The **height** of a node `v` in a tree `T` is defined recursively:
 - If `v` is an external node, then the height of `v` is 0.
 - Otherwise, the height of `v` is one plus the maximum height of a child of `v`.

```
Algorithm depth(T, v)
if T.isRoot(v)
  return 0
else
  return 1 + depth(T, T.parent(v))
```

```
Algorithm height(T, v)
if T.isExternal(v)
  return 0
else
  h ← 0
  for each child w of v in T
    h ← max(h, height(T, w))
  return 1 + h
```

Preorder Traversal

- A **traversal** visits the nodes of a tree in a systematic manner.
- In a **preorder traversal**, a node is visited before its descendents.
- Application: print a structured document

```
Algorithm preorder(v)
  visi(v)
  for each child w of v in T
    preorder(w)
```

```
1 Make Money Fast!

2 1. Motivations
   3 1.1 Greed
   4 1.2 Avidity

5 2. Methods
   6 2.1 Stock Fraud
   7 2.2 Ponzi Scheme
   8 2.3 Bank Robbery

9 References
```
Postorder Traversal

- In a postorder traversal, a node is visited after its descendants.
- Application: compute space used by files in a directory and its subdirectories.

Algorithm postOrder(v)

1. for each child w of v
 1. postOrder(w)
 2. visit(v)

Binary Tree

- A binary tree is a tree with the following properties:
 1. Each internal node has two children.
 2. The children of a node are an ordered pair.
- We call the children of an internal node left child and right child.
- Alternative recursive definition: a binary tree is either
 1. a tree consisting of a single node, or
 2. a tree whose root has an ordered pair of children, each of which is a binary tree.

Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 1. internal nodes: operators
 2. leaves: operands
- Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$

Decision Tree

- Binary tree associated with a decision process
 1. internal nodes: questions with yes/no answer
 2. leaves: decisions
- Example: shooting (robots playing football)
Properties of Binary Trees

- Notation
 - \(n \) number of nodes
 - \(l \) number of leaves
 - \(i \) number of internal nodes
 - \(h \) height

- Properties:
 - \(l = i + 1 \)
 - \(n = 2l - 1 \)
 - \(h \leq i \)
 - \(h \leq (n - 1)/2 \)
 - \(l \leq 2^h \)
 - \(h \geq \log_2 l \)
 - \(h \geq \log_2 (n + 1) - 1 \)

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Update methods may be defined by data structures implementing the BinaryTree ADT
- Additional methods:
 - position leftChild(p)
 - position rightChild(p)
 - position sibling(p)

Inorder Traversal

- In an inorder traversal, a node is visited after its left subtree and before its right subtree

Algorithm inOrder(v)

```
if isInternal(v)
    inOrder(leftChild(v))
visit(v)
if isInternal(v)
    inOrder(rightChild(v))
```

Inorder Traversal – Application

- Application: draw a binary tree. Assign \(x \)- and \(y \)-coordinates to node \(v \), where
 - \(x(v) = \) inorder rank of \(v \)
 - \(y(v) = \) depth of \(v \)
Exercise: Preorder & InOrder Traversal

- Draw a (single) binary tree T, such that
 - Each internal node of T stores a single character
 - A preorder traversal of T yields EXAMFUN
 - An inorder traversal of T yields MAFXUEN

Print Arithmetic Expressions

Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm $\text{printExpression}(v)$

```python
if \text{hasLeft}(v):
    \text{print} ("")
\text{printExpression(leftChild(v))}
\text{print}(v.\text{element}())
if \text{hasRight}(v):
    \text{printExpression(rightChild(v))}
    \text{print} (")")
```

Evaluate Arithmetic Expressions

Specialization of a postorder traversal
- recursive method returning the value of a subtree
- when visiting an internal node, combine the values of the subtrees

Algorithm $\text{evalExpr}(v)$

```python
if \text{isExternal}(v):
    \text{return } v.\text{element}()
else:
    x \leftarrow \text{evalExpr(leftChild(v))}
    y \leftarrow \text{evalExpr(rightChild(v))}
    \hat{o} \leftarrow \text{operator stored at } v
    \text{return } x \hat{o} y
```

Exercise: Arithmetic Expressions

- Draw an expression tree that has
 - Four leaves, storing the values 1, 5, 6, and 7
 - 3 internal nodes, storing operations $+, -, \times, /$ (operators can be used more than once, but each internal node stores only one)
 - The value of the root is 21
Data Structure for Trees

• A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes
• Node objects implement the Position ADT

Data Structure for Binary Trees

• A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
• Node objects implement the Position ADT

C++ Implementation

• Tree interface
• BinaryTree interface extending Tree
• Classes implementing Tree and BinaryTree and providing
 - Constructors
 - Update methods
 - Print methods
• Examples of updates for binary trees
 - expandExternal(v)
 - removeAboveExternal(w)